Математична статистика - Руденко В. М. - Помилки прийняття статистичних рішень
Прийняття статистичних рішень виконується на основі емпіричного критерію: якщо значення ¥Емп знаходяться в критичній області | ¥Емп | > | ¥Кр |, нульова гіпотеза Н0 відхиляється24. На рис. 5.1 - 5.3 критичні області зафарбовано. Рівень статистичної значущості і відповідні критичні значення критеріїв визначаються по-різному при перевірці спрямованих і неспрямованих статистичних гіпотез. При спрямованих гіпотезах використовується однобічний критерій (рис. 5.1 і 5.2), при неспрямованих - двобічний (рис. 5.3).
Винятки: для деяких непараметричних критеріїв, наприклад, Є-критерію знаків, Т-критерію Вілкоксона і [/-критерію Манна-Вітні встановлюються зворотні співвідношення.
Двобічний критерій строгіший, оскільки він перевіряє відмінності в обидві сторони, і для нього при певному рівні значущості А критичні зони удвічі менші, ніж для однобічного критерію. Отже, на рівні значущості А для однобічного критерію нульова гіпотеза Н0 відхиляється, коли ¥Емп > ¥ А, для двобічного критерію Н0 відхиляється, коли ІРемп > ¥ а/2 . Наприклад, на рівні значущості А =0,05 критична зона для однобічного критерію складає ¥ 0і05 (рис. 5.1 або 5.2), для двобічного критерію - ¥0 025 (рис. 5.3).
Рис. 5.3. Двостороння критична область
Критичні значення параметричних критеріїв, наприклад, t-критерію Стьюдента або ^-критерію Фішера, зручніше отримувати за допомогою відповідних функцій MS Excel. Критичні значення непараметричних критеріїв табульовано таким чином, що спрямованим гіпотезам відповідає однобічний, а неспрямованим - двобічний критерій. Гіпотези дослідника повинні збігалися за сенсом із гіпотезами, пропонованими в описі кожного з критеріїв.
Помилки прийняття статистичних рішень
Прийняття статистичних рішень супроводжується помилками.
Помилка 1-го роду - це помилка відхилення нульової гіпотези, тоді як вона правильна. Ймовірність такої помилки позначається як А (рівень значущості). Отже, а=р{¥є ¥ Кр | H0} - це ймовірність події {¥є ¥ кр}, за умови, що нульова гіпотеза Н0 істина. Якщо ймовірність помилки - це А, то ймовірність правильного рішення (1- а). Чим менше а, тим більша достовірність прийняття правильного рішення.
Помилка 2-го роду - це помилка прийняття нульової гіпотези Н0 тоді, якщо вона неправильна. Ймовірність помилки 2-го роду позначається як Отже, Р=Р{¥<£ ¥Кр | НІ} - це ймовірність події {¥<£ ¥Кр}, за умови, що альтернативна гіпотеза НІ прийнята (нульова гіпотеза Н0 відхилена). Ймовірність не припуститися помилки 2-го роду дорівнює (1- Р) і називається потужністю критерію.
В табл. 5.1 показано можливі помилки прийняття статистичних рішень.
Таблиця 5.і
Помилки прийняття статистичних рішень
Прийняте рішення на основі критерію |
Реальний стан дійсності (нам невідомий) | |
Н0 істинна |
Н0 хибна | |
Н0Прийнято |
Правильне рішення |
Помилка 2-го роду |
Н0 відхилено |
Помилка 1-го роду |
Правильне рішення |
Потужність критерію - це його здатність виявляти відмінності, тобто відхиляти нульову гіпотезу про відсутність відмінностей, якщо вона помилкова. Потужність критерію визначається емпіричним шляхом. Виявляється, що деякі критерії дозволяють виявити відмінності там, де інші опиняються неспроможними це зробити, тому пропонується застосовувати більш потужні критерії. Проте підставою для вибору критерію може бути не лише потужність, але й інші його характеристики, а саме: ширший діапазон застосування до даних, визначених, наприклад, за номінальною або ранговою шкалою; обмеженість обсягів вибірки або їхня неоднаковість за обсягом; велика інформативність результатів. Тоді й використовують менш потужні критерії.
Схожі статті
-
Математична статистика - Руденко В. М. - Правила прийняття статистичних рішень
Прийняття статистичних рішень виконується на основі емпіричного критерію: якщо значення ¥Емп знаходяться в критичній області | ¥Емп | > | ¥Кр |, нульова...
-
Математична статистика - Руденко В. М. - Параметричні і непараметричні критерії
Статистичний критерій - це вирішальне правило, що забезпечує математично обгрунтоване прийняття істинної і відхилення помилкової гіпотези. Статистичні...
-
Математична статистика - Руденко В. М. - Рівень статистичної значущості
Статистичний критерій - це вирішальне правило, що забезпечує математично обгрунтоване прийняття істинної і відхилення помилкової гіпотези. Статистичні...
-
Математична статистика - Руденко В. М. - Статистичні критерії
Статистичний критерій - це вирішальне правило, що забезпечує математично обгрунтоване прийняття істинної і відхилення помилкової гіпотези. Статистичні...
-
Математична статистика - Руденко В. М. - 5.1. ХАРАКТЕРИСТИКА МЕТОДІВ ПЕРЕВІРКИ СТАТИСТИЧНИХ ГІПОТЕЗ
5.1. ХАРАКТЕРИСТИКА МЕТОДІВ ПЕРЕВІРКИ СТАТИСТИЧНИХ ГІПОТЕЗ Поняття статистичної гіпотези Статистичною гіпотезою називається будь-яке припущення щодо виду...
-
Математична статистика - Руденко В. М. - 5. ПЕРВІРКА СТАТИСТИЧНИХ ГІПОТЕЗ
5.1. ХАРАКТЕРИСТИКА МЕТОДІВ ПЕРЕВІРКИ СТАТИСТИЧНИХ ГІПОТЕЗ Поняття статистичної гіпотези Статистичною гіпотезою називається будь-яке припущення щодо виду...
-
Математична статистика - Руденко В. М. - Точкове оцінювання. Властивості статистичних оцінок
Точкове оцінювання Застосовують для приблизної оцінки Параметрів генеральної сукупності за статистиками вибірки. Спостережені вибіркові показники є...
-
Математична статистика - Руденко В. М. - Інтервальне оцінювання
В основі застосування методу найменших квадратів покладено умову Мінімізації суми квадратів відхилень вибіркових даних від тих, що визначаються оцінкою....
-
Математична статистика - Руденко В. М. - Поняття статистичної гіпотези
5.1. ХАРАКТЕРИСТИКА МЕТОДІВ ПЕРЕВІРКИ СТАТИСТИЧНИХ ГІПОТЕЗ Поняття статистичної гіпотези Статистичною гіпотезою називається будь-яке припущення щодо виду...
-
Математична статистика - Руденко В. М. - Метод найменших квадратів
В основі застосування методу найменших квадратів покладено умову Мінімізації суми квадратів відхилень вибіркових даних від тих, що визначаються оцінкою....
-
Математична статистика - Руденко В. М. - Нормальний розподіл
Роботи Я. Бернуллі, а також приватні дослідження інших математиків XVII-XVIII ст. з Європи згодом оформилися в теорію ймовірності. У початковий період...
-
Математична статистика - Руденко В. М. - 2.2. ПОКАЗНИКИ ВИБІРКИ
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - Ймовірність подій
Випадкову подію можна передбачити лише з деякою ймовірністю. Ймовірність події - це чисельна міра об'єктивної можливості цієї події (інтуїтивне означення...
-
Математична статистика - Руденко В. М. - Основні завдання та методи математичної статистики
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - Теорема Бернуллі
Теорема Бернуллі стверджує: якщо т - кількість подій А в п попарно незалежних випробуваннях, а Р є ймовірність настання події А в кожнім з випробувань,...
-
Математична статистика - Руденко В. М. - Повторні випробування
Повторні випробування Явища і процеси, що вивчає психологія, - це, як правило, складні події. Тому формування теоретичної бази опису таких подій зручно...
-
Математична статистика - Руденко В. М. - 3.3. ЗАКОН ВЕЛИКИХ ЧИСЕЛ
Повторні випробування Явища і процеси, що вивчає психологія, - це, як правило, складні події. Тому формування теоретичної бази опису таких подій зручно...
-
Математична статистика - Руденко В. М. - Міри центральної тенденції (МЦТ)
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - Методи статистичного оцінювання параметрів
Точкове оцінювання Застосовують для приблизної оцінки Параметрів генеральної сукупності за статистиками вибірки. Спостережені вибіркові показники є...
-
Математична статистика - Руденко В. М. - 4. СТАТИСТИЧНЕ ОЦІНЮВАННЯ
Поняття статистичного оцінювання параметрів Основною метою статистичного оцінювання є визначення дійсних параметрів генеральної сукупності на основі...
-
Математична статистика - Руденко В. М. - Поняття статистичного оцінювання параметрів
Поняття статистичного оцінювання параметрів Основною метою статистичного оцінювання є визначення дійсних параметрів генеральної сукупності на основі...
-
Математична статистика - Руденко В. М. - Теорема Чебишева
Теорема Бернуллі стверджує: якщо т - кількість подій А в п попарно незалежних випробуваннях, а Р є ймовірність настання події А в кожнім з випробувань,...
-
Математична статистика - Руденко В. М. - Біноміальний розподіл
Зміст класичних законів великих чисел полягає в тому, що вибіркове середнє арифметичне незалежних однаково розподілених випадкових величин наближається...
-
Математична статистика - Руденко В. М. - 3.4. ТЕОРЕТИЧНІ РОЗПОДІЛИ ВИПАДКОВИХ ВЕЛИЧИН
Зміст класичних законів великих чисел полягає в тому, що вибіркове середнє арифметичне незалежних однаково розподілених випадкових величин наближається...
-
Математична статистика - Руденко В. М. - 1. ПРЕДМЕТ МАТЕМАТИЧНОЇ СТАТИСТИКИ
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - Елементи комбінаторики
Формула повної ймовірності дає можливість розрахувати ймовірність Р(А) події А, якщо вона залежить від системи подій-гіпотез Н1,Н2,...,НП, за умовними...
-
Математична статистика - Руденко В. М. - Характеристики випадкових величин
Випадкову величину X можна повноцінно характеризувати функцією розподілу подій сс>і, (функція визначена на просторі елементарних подій £2). Функція...
-
Математична статистика - Руденко В. М. - Математичне сподівання
Випадкову величину X можна повноцінно характеризувати функцією розподілу подій сс>і, (функція визначена на просторі елементарних подій £2). Функція...
-
Математична статистика - Руденко В. М. - Розподіли випадкових величин
Розподіли випадкових величин Випадкова величина - це величина, яка в результаті випробувань може приймати певні значення (із сукупності своїх значень) з...
-
Математична статистика - Руденко В. М. - 3.2. ВИПАДКОВІ ВЕЛИЧИНИ
Розподіли випадкових величин Випадкова величина - це величина, яка в результаті випробувань може приймати певні значення (із сукупності своїх значень) з...
Математична статистика - Руденко В. М. - Помилки прийняття статистичних рішень