Математична статистика - Руденко В. М. - 2.2. ПОКАЗНИКИ ВИБІРКИ
Міри центральної тенденції (МЦТ)
Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники дають відповіді на питання про те, наприклад, "який середній рівень інтелекту студентів педагогічного університету?", "яке типове значення показника відповідальності певної групи осіб?". Існує порівняно невелика кількість таких показників-мір і в першу чергу: Мода, медіана, середнє арифметичне. Кожна конкретна МЦТ має свої особливості, що роблять її цінною для характеристики об'єкта дослідження в певних умовах.
Мода Мо - це значення, яке найчастіше трапляється серед емпіричних даних. Так, для ряду значень 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5 мода дорівнює 3 (Мо = 3). Зверніть увагу на те, що мода є значення з найбільшою частотою (у прикладі це значення дорівнює 3), а не частота цього значення (у прикладі вона дорівнює 4).
При визначенні моди необхідно дотримуватися таких угод:
O мода може бути відсутня, наприклад, для даних 2, 2, 3, 3, 4, 4, 5, 5;
O якщо варіанти суміжні і мають однакову частоту, мода визначається як середнє значення сусідніх варіант. Наприклад, для ряду 2, 2, 3, 4, 4, 4, 5, 5, 5 Мода Мо = (4+5)/2=4,5;
O якщо варіанти несуміжні, може існувати декілька мод. Так, для даних 2,
2, 3, 3, 3, 4, 5, 5, 5 характерна Бімодальність, тобто дві моди Мо1 = 3 і Мо2 = 5;
O емпіричні дані можуть мати великі та малі моди. Наприклад, дані 2, 2,
3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 9 мають одну велику моду Мо1 = 6 та дві малі моди Мо2 = 3,5 і Мо3 = 9.
На графіках розподілу мода - це варіанта з максимальною частотою. На рис. 2.25 варіанта х6=5 має найбільшу частоту (0,33), тому і є модою Мо = 5. Медіана Мсі - це значення, яке приходиться на середину упорядкованої послідовності емпіричних даних. Для непарної кількості даних медіана визначається середнім елементом Мй = х(П+1)/2. Наприклад, для 11 значень 4, 4,
4, 5, 5, 5, 5, 5, 6, 6, 7 медіана дорівнює 4 (Мсі = 5), тобто:
Мй = Х(п+1)/2 = Х(11+1)/2 = Х6 = 5 ■
Якщо кількість значень даних є парною, то медіаною є середнє значення центральних сусідніх елементів: Мй = Х"/2 +2Х"/2+1 . Наприклад, для 12 значень 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 7, 7 медіана Мй = (5+6)/2 = 5,5:
Мй _ ХП/2 + ХП/2+1 _ Х12/2 + Х12/2+1 _ Х6 + Х7 _ 5 + 6 _ _ 55
~ 2 2 2 2 ~ 2 _,.
Середнє арифметичне X (вибіркове середнє або середнє) сукупності п значень дорівнює:
X = Х1 + Х2 + - + Хп. (2.1)
П
- 1 П - 1
Використовують інші формули, наприклад, X = хІ скорочено X = -^ хІ.
П І=1 П
Так, для вибірки (2, 2, 3, 3, 4, 5, 6, 7, 7, 8) Середнє X дорівнюватиме:
X = (2 + 2 + 3 + 3 + 4 + 5 + 6 + 7 + 7 + 8)/10 = 47/10 = 4,7. Якщо дані представлено розподілами частот, середнє визначається як:
X =І£і 'Хі (2.2)
І /і
Де х,- - варіанти незгрупованих частот або центральні значення класових інтервалів у разі згрупованих частот; £ - диференціальні частоти. Особливості мір центральної тенденції:
O мода вибірки обчислюється просто, її можна визначити "на око". Для дуже великих груп даних мода є досить стабільною мірою центру розподілу;
O медіана займає проміжне положення між модою і середнім з погляду її підрахунку. Ця міра особливо легко визначається у разі ранжированих даних;
O середнє арифметичне передбачає використовування всіх значень вибірки, причому всі вони впливають на значення цієї міри.
Розглянемо, що може відбутися з модою, медіаною і середнім, коли зміниться удвічі лише одне значення, наприклад, 10-го об'єкта вибірки (рис. 2.28).
Рис. 2.28. Властивості МЦТ
Як бачимо, мода і медіана залишилися незмінними, у той час як середнє змінилося значною мірою (з 4,8 до 5,7). На величину середнього особливо суттєво впливають значення, що перебувають далеко від центру групи даних.
З точки зору помилок, що виникають через те, коли для характеристики цілої сукупності вибирається лише одна єдина статистична міра (мода, медіана чи Середнє), кожна міра центральної тенденції має свою інтерпретацію
Мода є найбільш представницьким значенням або значенням, яке Найкраще "замінює всі значення", якщо ми змушені вибрати одне.
Медіана - це таке значення, для якого сума абсолютних різниць усіх значень Менша за суму різниць для будь-якого іншого значення. Наприклад, для сукупності {1, 3, 6, 8, 9} медіана Мсі = 6. Абсолютні різниці становлять: |1-6|=5, |3-6|=3, |6-6|=0, |8-6|=2, |9-6|=3. Сума всіх цих різниць 5+3+0+2+3=13 менша за суму різниць щодо будь-якого іншого значення. Наприклад, для 1 абсолютні різниці |1-1|=0, |3-1|=2, |6-1|=5, |8-1|=7, |9-1|=8, а їхня сума 0+2+5+7+8=22. Інші розрахунки дадуть подібні результати.
Якщо вибрати медіану, то досягається мінімальне відхилення - за умови, що "відхилення" визначається як сума абсолютної відмінності кожного значення від медіанної оцінки. Якщо ж замість кожного значення береться Середнє, забезпечується мінімальне відхилення - за умови, що "відхилення" визначається як Сума квадратів різниць кожного значення з середнім.
Використання мір центральної тенденції у якості характеристик випадкової вибірки є умовою необхідною, але недостатньою. Показники описової статистики, крім МЦТ, включають ще одну групу показників - міри мінливості (ММ).
Схожі статті
-
Математична статистика - Руденко В. М. - Міри центральної тенденції (МЦТ)
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - Міри мінливості (ММ)
Обмеженість мір центральної тенденції для характеристики сукупностей можна продемонструвати на прикладі двох вибірок (рис. 2.29), які мають Різні...
-
Математична статистика - Руденко В. М. - Варіаційні ряди та статистичні розподіли
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - Незгруповані розподіли
Незгруповані Розподіли застосовують до емпіричних даних, властивості яких виміряні за інтервальними або відносними шкалами і приймають тільки певні, як...
-
Математична статистика - Руденко В. М. - 2.1. ЕМПІРИЧНІ РОЗПОДІЛИ
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - Згруповані розподіли
Розподіли згрупованих частот Використовуються у разі інтервальних або відносних типів вимірювань, якщо емпіричні дані приймають будь-які дійсні значення...
-
Математична статистика - Руденко В. М. - 2. СТАТИСТИЧНІ ПОКАЗНИКИ ВИБІРКИ
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - Ранжировані розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Атрибутивні розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Основні завдання та методи математичної статистики
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - 1. ПРЕДМЕТ МАТЕМАТИЧНОЇ СТАТИСТИКИ
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - Розрахунки та інтерпретація МЦТ і ММ
Розрахунки показників МЦТ і ММ можна здійснити в MS Excel трьома способами з використанням: O математичних операцій за відповідних формул МЦТ і ММ; O...
-
Математична статистика - Руденко В. М. - ВСТУП
Психолог у своїй діяльності нерідко має справу з масивами емпіричної інформації і змушений будувати свої висновки в умовах невизначеності. Така ситуація...
-
У процесі збирання статистичних даних можуть виникнути похибки і неточності, які називають Помилками спостереження. Кількісно вони визначаються різницею...
-
Теорія статистики - Мармоза А. Т. - 2.2. Форми, види і способи статистичного спостереження
Статистичні дані можна одержати різними шляхами і способами. Залежно від Організації статистичного спостереження Розрізняють три основні форми: 1)...
-
Міжнародні фінанси - Рогач О. І - ЗОВНІШНЯ ЗАБОРГОВАНІСТЬ: ПОНЯТТЯ, ПОКАЗНИКИ, СУБ'ЄКТИ
- Зовнішня заборгованість: поняття, показники, суб'єкти - Підходи кредиторів та боржників до подолання кризи заборгованості країн, що розвиваються -...
-
Статистика - Опря А. Т. - § 2.2. Програма статистичного спостереження
Програма статистичного спостереження являє собою перелік питань, на які треба одержати відповіді в процесі збирання статистичних зведень щодо кожної...
-
Теорія статистики - Мармоза А. Т. - ПЕРЕДМОВА
У сучасному суспільстві в умовах економічних реформ, формування ринкових відносин, розвитку різноманітних форм господарювання та інтеграційних процесів...
-
Теорія статистики - Мармоза А. Т. - 3.1. Поняття про статистичне зведення
3.1. Поняття про статистичне зведення У результаті першої стадії статистичного дослідження - статистичного спостереження - отримують статистичну...
-
3.1. Поняття про статистичне зведення У результаті першої стадії статистичного дослідження - статистичного спостереження - отримують статистичну...
-
Теорія статистики - Мармоза А. Т. - 1.2. Основні поняття в статистиці
З поняттям про предмет статистики тісно пов'язані поняття статистичного показника, статистичної закономірності, статистичної сукупності, ознаки, варіації...
-
2.1. Поняття про статистичне спостереження. Програмно-методологічні та організаційні питання статистичного спостереження Для того щоб вивчити кількісну...
-
Теорія статистики - Мармоза А. Т. - Розділ 2. Статистичне спостереження
2.1. Поняття про статистичне спостереження. Програмно-методологічні та організаційні питання статистичного спостереження Для того щоб вивчити кількісну...
-
Теорія статистики - Мармоза А. Т. - 1.5. Завдання і організація статистики в Україні
Завдання статистичної науки тісно пов'язані з практичними потребами державного управління і керівництва розвитком економіки і соціальної сфери. Кожний...
-
Теорія статистики - Мармоза А. Т. - 1.4. Зв'язок статистики з іншими науками
Соціально-економічна статистика пов'язана з багатьма науками. При цьому передусім необхідно зазначити тісний і нерозривний зв'язок статистичної науки з...
-
Національна економіка - Мельник А. Ф. - 1.5. Економічна безпека держави. Показники оцінки її рівня
Економічна безпека є провідною складовою національної безпеки держави. Національна безпека - це захищеність життєво важливих інтересів людини і...
-
Статистика - Опря А. Т. - § 2.4. Організаційні форми, види і способи статистичного спостереження
У статистичній практиці застосовуються різні форми статистичних спостережень. Із погляду організації спостереження розрізняють дві його основні форми:...
-
Організаційний план статистичного спостереження - це складова частина загального плану спостереження, в якій викладено порядок його організації і...
-
§ 2.1. Поняття статистичного спостереження, основні вимоги щодо його здійснення Щоб одержати інформацію про стан і розвиток економіки країни чи інші...
-
В умовах широкого застосування методів сучасної математики в усіх галузях наукових досліджень, фундаментальних і прикладних, а також у вирішенні ряду...
Математична статистика - Руденко В. М. - 2.2. ПОКАЗНИКИ ВИБІРКИ