Математична статистика - Руденко В. М. - Методи статистичного оцінювання параметрів
Точкове оцінювання Застосовують для приблизної оцінки Параметрів генеральної сукупності за статистиками вибірки. Спостережені вибіркові показники є статистичними оцінками параметрів генеральної сукупності з певною точністю (або з певними статистичними похибками). До того ж статистичні оцінки є випадковими величинами, яким притаманний неконтро-льований розкид навіть, якщо вибірки взято з тієї ж самої генеральної сукупності.
При оцінюванні бажано, щоб втрата інформації, яка може бути суттєвою для прийняття статистичних рішень, була мінімальною. Отже, для того, щоб оцінки були надійними, вони мають відповідати деяким вимогам, тобто володіти певними властивостями.
Основними властивостями статистичних оцінок є спроможність, незмі-щенність, ефективність:
O Спроможність. Статистична оцінка ®N спроможна тоді, коли при постійному збільшенні обсягу вибірки (n -"со) вона наближається до значення параметра ©, який оцінює. Статистика ©" є спроможною оцінкою параметpa 0 , коли для будь-якого додатного числа є є справедливим співвідношення
LimP{©N -0>є = 0. (4.2)
Наприклад, вибіркове середнє X є спроможною оцінкою генерального середнього Fi, оскільки при збільшені числа випробувань X наближається до свого математичного сподівання (див. вираз (3.45)). Спроможною оцінкою вважається і вибіркова дисперсія.
Вимога спроможності означає, що оцінка має нести практичний сенс, наближати нас до істини і не бути абсурдною. З другого боку, у більшості ситуацій можна запропонувати декілька спроможних оцінок для одного й того ж самого параметра. Отже, властивість спроможності необхідна, але недостатня вимога. її необхідно доповнити іншими вимогами.
O Незміщенність. Статистика вважається незміщеною, якщо її математичне сподівання дорівнює параметру, що оцінюється. Вибіркове середнє X є незміщеною оцінкою генерального середнього fi, оскільки м[ X ] =ц, чого не можна сказати, наприклад, про вибіркові показники дисперсії. Для математичного сподівання можна записати
1 Г 2 1 2 (Л 1 1 2 2
- пег - п - =<7 11--1 =-сг = ег--.
П п п) п п
Отже, математичне сподівання вибіркової дисперсії дорівнює
,^Г2П П -1 2 2 А2
Щз ] =-о =о--. (4.4)
Пп
Як видно, оцінка з2 параметру а2 є зміщеною. Від'ємне зміщення дорівнює А2/п, залежить від обсягу вибірки П і в ситуації спроможності досягає нуля, якщо п-> є". Вимога незміщенності особливо чутлива для малої кількості спостережень. Ця вада оцінки З2 усувається переходом до незміщенної оцінки
*2 =-- 3 2. (4.5)
П -1
O Ефективність. Точкова оцінка називається ефективною, якщо вона має найменшу міру дисперсії вибіркового розподілу у порівнянні з аналогічними оцінками, тобто виявляє найменшу випадкову варіативність. Наприклад, серед трьох показників положення центру нормального розподілу (середнього Х, медіани Ма і моди Мо) найбільш ефективною оцінкою вважається Х і найменш ефективною - Мо, оскільки для їхніх дисперсій характер-
2 2 2
Ним є співвідношення 3Х < 3Ма < $Мо [43, С. 100].
Для статистичного оцінювання параметрів генеральної сукупності бажано використовувати оцінки, які задовольняють одночасно вимоги спроможності, незміщенності й ефективності. Крім того, важливо знати, за якими методами відбувається вибір і побудова тієї чи іншої моделі статистичного оцінювання.
Методи статистичного оцінювання параметрів
Методи статистичного оцінювання розкривають математичні процедури, за допомогою яких будуються різні моделі "найкращого" оцінювання параметрів за результатами тих чи інших статистик. У прикладній статистиці розроблено багато видів оцінок19, серед яких найчастіше використовуються ме-
19 Див., наприклад, Кобзар А. И. Прикладная математическая статистика. - М., 2006
[37].
Тоди моментів, максимальної правдоподібності, найменших квадратів, які стали вже "класичними", а також методи "цензурування", "урізування", використання порядкових статистик та ін.
Схожі статті
-
Математична статистика - Руденко В. М. - Поняття статистичного оцінювання параметрів
Поняття статистичного оцінювання параметрів Основною метою статистичного оцінювання є визначення дійсних параметрів генеральної сукупності на основі...
-
Математична статистика - Руденко В. М. - Точкове оцінювання. Властивості статистичних оцінок
Точкове оцінювання Застосовують для приблизної оцінки Параметрів генеральної сукупності за статистиками вибірки. Спостережені вибіркові показники є...
-
Математична статистика - Руденко В. М. - 4. СТАТИСТИЧНЕ ОЦІНЮВАННЯ
Поняття статистичного оцінювання параметрів Основною метою статистичного оцінювання є визначення дійсних параметрів генеральної сукупності на основі...
-
Математична статистика - Руденко В. М. - Основні завдання та методи математичної статистики
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - 1. ПРЕДМЕТ МАТЕМАТИЧНОЇ СТАТИСТИКИ
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - Міри мінливості (ММ)
Обмеженість мір центральної тенденції для характеристики сукупностей можна продемонструвати на прикладі двох вибірок (рис. 2.29), які мають Різні...
-
Математична статистика - Руденко В. М. - Розрахунки та інтерпретація МЦТ і ММ
Розрахунки показників МЦТ і ММ можна здійснити в MS Excel трьома способами з використанням: O математичних операцій за відповідних формул МЦТ і ММ; O...
-
Математична статистика - Руденко В. М. - Міри центральної тенденції (МЦТ)
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - Квантилі
Квантилем Називається значення ранжированої змінної, що відокремлює від варіаційного ряду певну частку обсягу сукупності. Квантиль - загальне поняття. В...
-
Математична статистика - Руденко В. М. - Характеристики випадкових величин
Випадкову величину X можна повноцінно характеризувати функцією розподілу подій сс>і, (функція визначена на просторі елементарних подій £2). Функція...
-
Математична статистика - Руденко В. М. - Біноміальний розподіл
Зміст класичних законів великих чисел полягає в тому, що вибіркове середнє арифметичне незалежних однаково розподілених випадкових величин наближається...
-
Математична статистика - Руденко В. М. - Нормальний розподіл
Роботи Я. Бернуллі, а також приватні дослідження інших математиків XVII-XVIII ст. з Європи згодом оформилися в теорію ймовірності. У початковий період...
-
Математична статистика - Руденко В. М. - 3.4. ТЕОРЕТИЧНІ РОЗПОДІЛИ ВИПАДКОВИХ ВЕЛИЧИН
Зміст класичних законів великих чисел полягає в тому, що вибіркове середнє арифметичне незалежних однаково розподілених випадкових величин наближається...
-
Математична статистика - Руденко В. М. - Нормовані дані
Квантилем Називається значення ранжированої змінної, що відокремлює від варіаційного ряду певну частку обсягу сукупності. Квантиль - загальне поняття. В...
-
Математична статистика - Руденко В. М. - Початкові та центральні моменти
Розрахунки показників МЦТ і ММ можна здійснити в MS Excel трьома способами з використанням: O математичних операцій за відповідних формул МЦТ і ММ; O...
-
Математична статистика - Руденко В. М. - 3.1. ВИПРОБУВАННЯ ТА ПОДІЇ
Основним завданням математичної статистики є опис і пояснення імовірнісної поведінки об'єктів досліджень. Математична статистика вирішує це завдання...
-
Математична статистика - Руденко В. М. - Ймовірність подій
Випадкову подію можна передбачити лише з деякою ймовірністю. Ймовірність події - це чисельна міра об'єктивної можливості цієї події (інтуїтивне означення...
-
Математична статистика - Руденко В. М. - Основні поняття і означення
Основним завданням математичної статистики є опис і пояснення імовірнісної поведінки об'єктів досліджень. Математична статистика вирішує це завдання...
-
Математична статистика - Руденко В. М. - 3. ОСНОВИ ТЕОРІЇ ЙМОВІРНОСТЕЙ
Основним завданням математичної статистики є опис і пояснення імовірнісної поведінки об'єктів досліджень. Математична статистика вирішує це завдання...
-
Математична статистика - Руденко В. М. - Математичне сподівання
Випадкову величину X можна повноцінно характеризувати функцією розподілу подій сс>і, (функція визначена на просторі елементарних подій £2). Функція...
-
Математична статистика - Руденко В. М. - 2.2. ПОКАЗНИКИ ВИБІРКИ
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - Теорема Чебишева
Теорема Бернуллі стверджує: якщо т - кількість подій А в п попарно незалежних випробуваннях, а Р є ймовірність настання події А в кожнім з випробувань,...
-
Математична статистика - Руденко В. М. - Теорема Бернуллі
Теорема Бернуллі стверджує: якщо т - кількість подій А в п попарно незалежних випробуваннях, а Р є ймовірність настання події А в кожнім з випробувань,...
-
Математична статистика - Руденко В. М. - Ранжировані розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Атрибутивні розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Дисперсія випадкової величини
Математичне сподівання показує, навколо якої чисельної міри групуються значення випадкової величини. Проте, необхідно також мати можливість вимірювати...
-
Математична статистика - Руденко В. М. - Повторні випробування
Повторні випробування Явища і процеси, що вивчає психологія, - це, як правило, складні події. Тому формування теоретичної бази опису таких подій зручно...
-
Математична статистика - Руденко В. М. - 3.3. ЗАКОН ВЕЛИКИХ ЧИСЕЛ
Повторні випробування Явища і процеси, що вивчає психологія, - це, як правило, складні події. Тому формування теоретичної бази опису таких подій зручно...
-
Математична статистика - Руденко В. М. - ВСТУП
Психолог у своїй діяльності нерідко має справу з масивами емпіричної інформації і змушений будувати свої висновки в умовах невизначеності. Така ситуація...
-
Математична статистика - Руденко В. М. - Варіаційні ряди та статистичні розподіли
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
Математична статистика - Руденко В. М. - Методи статистичного оцінювання параметрів