Математична статистика - Руденко В. М. - Нелінійна кореляція
Приклад 2.8. Оцінити зв'язок між віком (змінна X) і результатами допоміжного тесту "цифра-знак" шкали інтелекту дорослих Векслера (змінна Y). Упорядковані за віком дані 15 осіб представлено у таблиці рис. 2.58.
Послідовність рішення:
O оцінити характер лінійності (нелінійності) зв'язку між значеннями ознак віку (X) і тесту (Y) за допомогою діаграми розсіяння (рис. 2.57);
Рис. 2.57. Діаграма розсіяння ознак
O переконатися, що кореляція нелінійна - спочатку результати тестування круто зростають для осіб віком від 10 до 22 років, досягають максимального значення, а потім повільно зменшуються. Якісна картина дає підстави для застосування кількісної міри нелінійності - кореляційного відношення, чисельне значення якого знаходиться у межах від 0 до 1:
Лень У і від середнього У; 5БЗагап = s У ■ (п -1) - загальна сума квадратів;
O розрахувати квадрати різниць s¡ окремо для кожної вікової групи (вікові групи виділено зафарбованими рядками, результати розрахунків і відповідних формул показано на рис. 2.58 і 2.59);
O внести у комірку вираз =(С3-СРЗНАЧ($С$3:$С$4))Л2. Аналогічний вираз внести у комірки (вікова група 10 містить лише два значення тесту);
O визначити Si для інших вікових груп, де Х = 14, 18, 22, 26, 30, 34 і 38;
O у комірці Б18 розрахувати 88Внутр (вираз =СУММ(03:017));
O у комірці Б19 розрахувати 88Шгал (вираз =ДИСП(С3:С17)*(А17-1));
O у комірці Б20 отримати відношення п2Ухс (внести вираз =1-018/019);
O у комірці Б21 розрахувати коефіцієнт кореляції Пірсона для всього масиву за допомогою функції MS Excel =ПИРСОН(В3:В17;С3:С17). Коефіцієнт кореляції дорівнюватиме приблизно нулю (rXy ~ -0,04), що свідчить про (нібито) відсутність будь-якого зв'язку між змінними;
O розрахувати коефіцієнти кореляції окремо для частин масиву: у комірці D22 для віку від 10 до 22, у комірці D23 для віку від 26 до 38 .
Отже, для віку від 10 до 22 років коефіцієнт кореляції має високе додатне значення (rXy=+0,83), що підтверджує прямий зв'язок, який можна спостерігати на діаграмі. Для віку від 26 до 38 років коефіцієнт кореляції має від'ємне значення (^=-0,69), що інтерпретується як зворотний зв'язок. Значення Кореляційного відношення " 0,67 підтверджує високій рівень не лінійності зв'язку змінних X Y.
Слід звернути увагу на те, що для коефіцієнта rfYxc спочатку вказують індекс у, а потім - х, який є мірою прогнозування Y по X. Важливо зазначити, що для лінійного кореляційного зв'язку виконується співвідношення rXy = rYx, проте RfYxc і RfXyy матимуть різні значення. Якщо звернутися до діаграми розсіяння (рис. 2.57), то можна відзначити той факт, що для особи, наприклад, віком 10 років (Х=10), можна прогнозувати середню оцінку тесту у 8 балів (Y=(7+9)/2=8), у той час як для оцінки тесту, наприклад, у 8 балів вік особи може бути як близько 10, так і близько 38 років.
Розрахунки важливих для психолого-педагогічних досліджень коефіцієнтів кореляції приведено разом з оцінкою їхньої вірогідності у розділі 5.6.
Коефіцієнти взаємної зв'язаності
Коефіцієнти взаємної зв'язаності, Наприклад, Чупрова K і Пірсона С застосовуються для оцінки зв'язку у ситуаціях, коли кожна якісна ознака складається більш ніж з двох груп. Коефіцієнт Чупрова К використовується у разі неоднакової кількості рядків і стовпчиків таблиці спряженості (k, Ф k2):
Де К] і к2 - кількість груп першої і другої ознаки (параметри XІ У). Коефіцієнт взаємної зв'язаності Пірсона с застосовується, коли кількість рядків і кількість стовпців у таблиці спряженості збігаються (к; = к2):
Значення коефіцієнтів Чупрова К і Пірсона с змінюються від 0 до 1. Приклад 2.9. Оцінити зв'язаність між приналежністю осіб до певної соціальної групи та їх психічними станами (табл. 2.5).
Таблиця 2.5
Розподіл груп за психічними станами
Послідовність рішення:
O Для ситуації з неоднаковою кількістю рядків і стовпчиків (к; Ф к2) використати коефіцієнт взаємної зв'язаності Чупрова К.
O Внести емпіричні дані у таблицю рис. 9.20 і виконати такі дії: - розписати докладніше вираз <р2, виходячи з умов К, = 3 і К2 = 4:
Рис. 2.60. Результати розрахунку коефіцієнта Чупрова К
Рис. 2.61. Формули для розрахунку коефіцієнта Чупрова К
- визначити параметр ф2:
<р2 = 0,538+0,454+0,513-1 = 0,505. - отримати чисельне значення коефіцієнта взаємної зв'язаності Чупрова К
К - і = , ^ 0,45.
У(к1 - 1)(к2 -1) V Л/(3 " 1)(4 -1)
Висновки. Значення коефіцієнта Чупрова К ~ 0,45 свідчить про помірну взаємну зв'язаність між параметрами У і X. Направлення зв'язаності коефіцієнт К не вказує. Це можна оцінити за формою спільного розподілу.
Запитання. Завдання.
1. Що таке кореляція? Охарактеризуйте особливості кореляційного зв'язку.
2. Які види зв'язків (три типи залежностей) між змінними X і У можна виділити?
3. Доведіть, що вибірковий коефіцієнт кореляції є випадковою величиною.
4. Який кореляційний зв'язок називають прямим, а який - зворотним?
5. Як якісно оцінити лінійність (нелінійність) кореляції?
6. В яких межах знаходиться чисельне значення коефіцієнтами кореляції?
7. Як кількісно оцінити лінійність (нелінійність) кореляції?
8. Запишіть формулу коефіцієнта лінійної кореляції Персона.
9. В яких межах знаходиться чисельне значення кореляційного відношення?
10. Охарактеризуйте особливості використання коефіцієнтів взаємної зв'язаності Чупрова К і Пірсона С.
11. В яких межах знаходиться значення коефіцієнтів взаємної зв'язаності Чупрова К і Пірсона С?
12. Повторіть математичні процедури завдань за прикладами 2.7 - 2.9.
13. Виконайте лабораторні роботи № 4 - № 6.
Схожі статті
-
Математична статистика - Руденко В. М. - Лінійна кореляція
Завданням описової статистики є не лише систематизація емпіричних даних у вигляді розподілу частот та розрахунки типових показників МЦТ і варіацій ознак...
-
Математична статистика - Руденко В. М. - Сутність кореляції
Завданням описової статистики є не лише систематизація емпіричних даних у вигляді розподілу частот та розрахунки типових показників МЦТ і варіацій ознак...
-
Математична статистика - Руденко В. М. - 2.3. КОРЕЛЯЦІЙНИЙ АНАЛІЗ
Завданням описової статистики є не лише систематизація емпіричних даних у вигляді розподілу частот та розрахунки типових показників МЦТ і варіацій ознак...
-
Математична статистика - Руденко В. М. - Квантилі
Квантилем Називається значення ранжированої змінної, що відокремлює від варіаційного ряду певну частку обсягу сукупності. Квантиль - загальне поняття. В...
-
Математична статистика - Руденко В. М. - Нормовані дані
Квантилем Називається значення ранжированої змінної, що відокремлює від варіаційного ряду певну частку обсягу сукупності. Квантиль - загальне поняття. В...
-
Математична статистика - Руденко В. М. - Згруповані розподіли
Розподіли згрупованих частот Використовуються у разі інтервальних або відносних типів вимірювань, якщо емпіричні дані приймають будь-які дійсні значення...
-
Математична статистика - Руденко В. М. - Міри мінливості (ММ)
Обмеженість мір центральної тенденції для характеристики сукупностей можна продемонструвати на прикладі двох вибірок (рис. 2.29), які мають Різні...
-
Математична статистика - Руденко В. М. - Ранжировані розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Атрибутивні розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Варіаційні ряди та статистичні розподіли
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - Міри центральної тенденції (МЦТ)
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - 2.2. ПОКАЗНИКИ ВИБІРКИ
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - Незгруповані розподіли
Незгруповані Розподіли застосовують до емпіричних даних, властивості яких виміряні за інтервальними або відносними шкалами і приймають тільки певні, як...
-
Математична статистика - Руденко В. М. - 2.1. ЕМПІРИЧНІ РОЗПОДІЛИ
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - Розрахунки та інтерпретація МЦТ і ММ
Розрахунки показників МЦТ і ММ можна здійснити в MS Excel трьома способами з використанням: O математичних операцій за відповідних формул МЦТ і ММ; O...
-
Математична статистика - Руденко В. М. - Початкові та центральні моменти
Розрахунки показників МЦТ і ММ можна здійснити в MS Excel трьома способами з використанням: O математичних операцій за відповідних формул МЦТ і ММ; O...
-
Математична статистика - Руденко В. М. - 2. СТАТИСТИЧНІ ПОКАЗНИКИ ВИБІРКИ
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - Основні завдання та методи математичної статистики
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - 1. ПРЕДМЕТ МАТЕМАТИЧНОЇ СТАТИСТИКИ
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - ВСТУП
Психолог у своїй діяльності нерідко має справу з масивами емпіричної інформації і змушений будувати свої висновки в умовах невизначеності. Така ситуація...
-
Теорія статистики - Мармоза А. Т. - 3.3. Методологія статистичних групувань
Статистичні групування здійснюють у кілька послідовних етапів: 1) теоретичний аналіз досліджуваного явища або процесу; 2) вибір групувальної ознаки...
-
Значення та етапи кореляційного аналізу. Методика розрахунку основних показників зв'язків. Сфера і порядок застосування результатів кореляційного...
-
3.1. Поняття про статистичне зведення У результаті першої стадії статистичного дослідження - статистичного спостереження - отримують статистичну...
-
Теорія статистики - Мармоза А. Т. - 3.1. Поняття про статистичне зведення
3.1. Поняття про статистичне зведення У результаті першої стадії статистичного дослідження - статистичного спостереження - отримують статистичну...
-
Основи готельної справи - Руденко В. П. - 3. ВИДИ СУЧАСНИХ ЗАСОБІВ РОЗМІЩЕННЯ
3.1. Основні підходи до класифікації засобів розміщення. 3.2. Класифікація засобів розміщення туристів за ВТО. 3.3. Типи готельних підприємств за...
-
Статистика - Опря А. Т. - 1.3.1. Предмет статистики як суспільної науки
1.3.1. Предмет статистики як суспільної науки Визначити предмет будь-якої науки - означає вирішити питання про її зміст і місце серед інших наук, а також...
-
Статистика - Опря А. Т. - § 4.3. Середні величини як характеристики ряду
При зоровому сприйнятті показників рядів розподілу і їх графіків переконуємося, що розмір варіант має деякі загальні закономірності, які проявляються в...
-
Теорія статистики - Мармоза А. Т. - 3.5. Ряди розподілу
Особливим видом групувань в статистиці є ряди розподілу, які є найпростішим способом упорядкування і узагальнення статистичних даних. Групування, в якому...
-
Теорія статистики - Мармоза А. Т. - 3.4. Вторинне групування
Поряд з первинним групуванням у статистиці знаходить широке застосування вторинне групування. Вторинним групуванням Називають утворення нових груп на...
-
Основи готельної справи - Руденко В. П. - 3.1. Основні підходи до класифікації засобів розміщення
3.1. Основні підходи до класифікації засобів розміщення. 3.2. Класифікація засобів розміщення туристів за ВТО. 3.3. Типи готельних підприємств за...
Математична статистика - Руденко В. М. - Нелінійна кореляція