Математична статистика - Руденко В. М. - 2. СТАТИСТИЧНІ ПОКАЗНИКИ ВИБІРКИ
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами:
- Емпіричними розподілами (варіаційними, атрибутивними, ранжирова-ними), що характеризують структуру досліджуваної властивості;
- Вибірковими показниками (мірами центральної тенденції і мінливості), які представляють чисельні значення типових властивостей вибірки;
- Кореляційно-регресійними показниками (коефіцієнтами кореляції, регресії), які дають можливість встановити приховані взаємозв'язки та закономірності явищ, спрогнозувати розвиток досліджуваних процесів.
2.1. ЕМПІРИЧНІ РОЗПОДІЛИ
Варіаційні ряди та статистичні розподіли
Емпіричні дані, які отримані шляхом вимірювань властивостей вибіркових об'єктів, повинні пройти первинну обробку і систематизацію: внесення у табличні форми (етап табуляціі), упорядкування у варіаційні послідовності (ряди), представлення у вигляді Емпіричних розподілів4.
Приклад 2.1. Систематизувати результати виконання випадковою вибіркою студентів тестових завдань: 3, 4, 4, 4, 3, 2, 4, 4, 5, 1 (обсяг вибірки П = 10) .
Послідовність рішення:
O припустимо, що результати виконання тестових завдань адекватно характеризують досліджувану властивість5 студентів, яку позначимо змінною X;
O за умовами прикладу зміннаXприймає значення: х1 = 3, х2 = 4, "., х10 = 1;
O первинні емпіричні дані (х,) внесено у перші два стовпчики табл. 2.1;
O упорядковані дані (х/ ) представлено як варіаційний ряд у третьому сто-
4 Емпіричні розподіли іноді мають і такі назви: "статистичні розподіли", "вибіркові ряди розподілу", "емпіричні розподіли частот", "розподіли емпіричних даних" та ін.
5 Наприклад, успішність розв'язування логічних завдань, рішення проблемних ситуацій, уміння виконувати різноманітні вправи тощо.
Впчику табл. 2.1;
O значення варіант (х) та їхня кількість (ш,) наведено в останніх двох стовпчиках табл. 2.1.
Таблиця 2.1
Систематизація результатів виконання тестових завдань (x)
Як бачимо, варіаційний ряд - це упорядкована за збільшенням (або за зменшенням) послідовність значень досліджуваної змінної X (у табл. 2.1 значення х/). Варіаційний ряд дає можливість наочно і швидко сприйняти структуру даних: варіанти значень (х), які може приймати і приймає змінна X, а також кількість відповідних варіант (т), їхні мінімальне і максимальне значення. Варіаційний ряд дозволяє безпосередньо оцінити деякі важливі показники вибірки, наприклад, моду і медіану. Систематизація даних у варіаційний ряд є підготовчим етапом до розрахунків і побудови статистичних розподілів досліджуваної змінної.
Статистичний розподіл - це математична модель об'єктів реальності у вигляді співвідношення значень змінної X, що характеризує властивості вибірки, до Частот їх появи. Наприклад, стовпчики значень хІ (варіанти X) і значень ті (кількість варіант) у табл. 2.1 по суті утворюють Статистичний розподіл, який розкриває залежність частоти появи (/і) від значень (хІ) змінної, тобто / ~ хІ. Отже, під поняттям "статистичний розподіл"/(х) слід розуміти емпіричний розподіли частот появи певних значень досліджуваної змінної (слово "частота" нерідко опускають, маючи на увазі його присутність). Частота / - це функція, де аргументом виступає варіанта х;.
Статистичні розподіли можна класифікувати за ознакою типів вимірювань6 змінної на: варіаційні, ранжировані та Атрибутивні (рис. 2.1).
Рис. 2.1. Класифікація статистичних розподілів за типами вимірювань
Варіаційні розподіли базуються на даних, які виміряні за шкалою відношень або інтервалів. Ранжировані розподіли застосовуються у разі порядкових (рангових) типів вимірювання. Атрибутивні розподіли характеризують дані, які виміряні за номінальними шкалами або шкалами "найменувань".
Основні види статистичних розподілів такі: диференціальні та інтегральні, які можуть складатися з Абсолютних і відносних частот (рис. 2.2).
Диференціальні розподіли представляють значення частот Окремо (тобто диференційовано) для кожної варіанти х,- змінної X.
Диференціальні абсолютні частоти - це кількості об'єктів МІ з однаковими значенням ХІ змінної X(або кількість однакових значень).
Диференціальні відносні частоти - це відношення диференціальних абсо-
6 Найчастіше використовується класифікація Стівенса 4-х типів вимірювань: за шкалами відношень, інтервалів, порядковими та номінальними [59].
Лютних частот ті до загальної кількості П об'єктів, тобто /І = тІ/п.
Інтегральні розподіли ( "накопичені" або "кумулятивні") формуються як доданки попередніх диференціальних частот. Вони визначають Сумарні частоти для варіанти, що не перевищує значення х,-змінної X.
І
Інтегральні абсолютні частоти У_| тІ - це накопичена сума диференціальних абсолютних частот від 1-ї доу-ї варіанти.
І
Інтегральні відносні частоти Е] = ^ /І - це накопичена сума диференціальних відносних частот від 1-ї доу-ї варіанти.
Варіаційні розподіли У разі інтервальних або відносних типів вимірювань залежать від:
O характеру досліджуваної змінної - дискретна змінна, чи неперервна;
O діапазону значень змінної - вузький і невеликий, чи широкий і різноманітний.
Тому за технологією побудови варіаційні розподіли поділяють на розподіли Незгрупованих і згрупованих варіант7. З метою лаконічності домовимося їх називати незгрупованими і згрупованими розподілами. Для незгрупованих розподілів частоти мають відношення до безпосередніх значень варіант з варіативного ряду; для згрупованих розподілів - до груп (або інтервалів) значень варіант.
Схожі статті
-
Математична статистика - Руденко В. М. - Незгруповані розподіли
Незгруповані Розподіли застосовують до емпіричних даних, властивості яких виміряні за інтервальними або відносними шкалами і приймають тільки певні, як...
-
Математична статистика - Руденко В. М. - Варіаційні ряди та статистичні розподіли
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - 2.1. ЕМПІРИЧНІ РОЗПОДІЛИ
Статистичні показники, що розкривають властивості вибірки, можна представити такими основними групами: - Емпіричними розподілами (варіаційними,...
-
Математична статистика - Руденко В. М. - Згруповані розподіли
Розподіли згрупованих частот Використовуються у разі інтервальних або відносних типів вимірювань, якщо емпіричні дані приймають будь-які дійсні значення...
-
Математична статистика - Руденко В. М. - Міри центральної тенденції (МЦТ)
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - 2.2. ПОКАЗНИКИ ВИБІРКИ
Міри центральної тенденції (МЦТ) Мірами центральної тенденції (МЦТ) називають чисельні показники типових властивостей емпіричних даних. Ці показники...
-
Математична статистика - Руденко В. М. - Міри мінливості (ММ)
Обмеженість мір центральної тенденції для характеристики сукупностей можна продемонструвати на прикладі двох вибірок (рис. 2.29), які мають Різні...
-
Математична статистика - Руденко В. М. - Ранжировані розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Атрибутивні розподіли
Атрибутивні розподіли Використовуються у разі Номінальних (категоріальних) типів вимірювань властивостей досліджуваних об'єктів. Приклад 2.5. Розрахувати...
-
Математична статистика - Руденко В. М. - Основні завдання та методи математичної статистики
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - 1. ПРЕДМЕТ МАТЕМАТИЧНОЇ СТАТИСТИКИ
Основні завдання та методи математичної статистики Математична статистика - це сучасна галузь математичної науки, яка займається статистичним описом...
-
Математична статистика - Руденко В. М. - Розрахунки та інтерпретація МЦТ і ММ
Розрахунки показників МЦТ і ММ можна здійснити в MS Excel трьома способами з використанням: O математичних операцій за відповідних формул МЦТ і ММ; O...
-
Математична статистика - Руденко В. М. - ВСТУП
Психолог у своїй діяльності нерідко має справу з масивами емпіричної інформації і змушений будувати свої висновки в умовах невизначеності. Така ситуація...
-
3.1. Поняття про статистичне зведення У результаті першої стадії статистичного дослідження - статистичного спостереження - отримують статистичну...
-
Статистика - Опря А. Т. - § 1.2. Статистичні сукупності
Вивчення статистичною наукою масових суспільних явищ означає, що статистичні показники завжди є наслідком узагальнення деякої сукупності фактів. Поняття...
-
Теорія статистики - Мармоза А. Т. - 3.1. Поняття про статистичне зведення
3.1. Поняття про статистичне зведення У результаті першої стадії статистичного дослідження - статистичного спостереження - отримують статистичну...
-
Статистика - Опря А. Т. - § 2.2. Програма статистичного спостереження
Програма статистичного спостереження являє собою перелік питань, на які треба одержати відповіді в процесі збирання статистичних зведень щодо кожної...
-
В умовах широкого застосування методів сучасної математики в усіх галузях наукових досліджень, фундаментальних і прикладних, а також у вирішенні ряду...
-
2.1. Поняття про статистичне спостереження. Програмно-методологічні та організаційні питання статистичного спостереження Для того щоб вивчити кількісну...
-
У процесі збирання статистичних даних можуть виникнути похибки і неточності, які називають Помилками спостереження. Кількісно вони визначаються різницею...
-
Теорія статистики - Мармоза А. Т. - 2.2. Форми, види і способи статистичного спостереження
Статистичні дані можна одержати різними шляхами і способами. Залежно від Організації статистичного спостереження Розрізняють три основні форми: 1)...
-
Теорія статистики - Мармоза А. Т. - Розділ 2. Статистичне спостереження
2.1. Поняття про статистичне спостереження. Програмно-методологічні та організаційні питання статистичного спостереження Для того щоб вивчити кількісну...
-
Теорія статистики - Мармоза А. Т. - 1.5. Завдання і організація статистики в Україні
Завдання статистичної науки тісно пов'язані з практичними потребами державного управління і керівництва розвитком економіки і соціальної сфери. Кожний...
-
Теорія статистики - Мармоза А. Т. - 1.4. Зв'язок статистики з іншими науками
Соціально-економічна статистика пов'язана з багатьма науками. При цьому передусім необхідно зазначити тісний і нерозривний зв'язок статистичної науки з...
-
Національна економіка - Мельник А. Ф. - 1.5. Економічна безпека держави. Показники оцінки її рівня
Економічна безпека є провідною складовою національної безпеки держави. Національна безпека - це захищеність життєво важливих інтересів людини і...
-
Організаційний план статистичного спостереження - це складова частина загального плану спостереження, в якій викладено порядок його організації і...
-
Місцеві фінанси - Петленко Ю. В. - 2. Межі та кількісні показники фінансової автономії
План 6. Поняття фінансової автономії місцевих органів влади. 7. Межі та кількісні показники фінансової автономії. 8. Взаємозв'язок місцевих і державних...
-
Статистика - Опря А. Т. - § 2.4. Організаційні форми, види і способи статистичного спостереження
У статистичній практиці застосовуються різні форми статистичних спостережень. Із погляду організації спостереження розрізняють дві його основні форми:...
-
Теорія статистики - Мармоза А. Т. - ПЕРЕДМОВА
У сучасному суспільстві в умовах економічних реформ, формування ринкових відносин, розвитку різноманітних форм господарювання та інтеграційних процесів...
-
Теорія статистики - Мармоза А. Т. - 1.1. Поняття статистики. Предмет статистики, її розділи
1.1. Поняття статистики. Предмет статистики, її розділи Приступаючи до вивчення курсу статистики необхідно передусім засвоїти зміст слова "статистика",...
Математична статистика - Руденко В. М. - 2. СТАТИСТИЧНІ ПОКАЗНИКИ ВИБІРКИ